Sistem bintang perumah yang sesuai Kebolehdiaman planet

Pemahaman akan kebolehdiaman sesebuah planet bermula dengan bintang perumahnya.[21] Zon boleh didiami misali didefinisikan berdasarkan keadaan permukaan sahaja; tetapi sesebuah metabolisme yang tidak bergantung pada cahaya bintang masih dapat wujud di luar zon boleh didiami dan berdaya hidup dalam pedalaman planet di mana terdapat air yang cecair.[21]

Di bawah naungan Projek Phoenix SETI, saintis Margaret Turnbull dan Jill Tarter pada tahun 2002 mencipta "HabCat" (Catalogue of Habitable Stellar Systems), sebuah katalog yang terhasil daripada 'menampi' hampir 120,000 bintang dari Katalog Hipparcos yang besar kepada kumpulan teras 17,000 bintang yang mungkin boleh didiami, dan kriteria pemilihan yang digunakannya memberikan titik permulaan yang baik untuk memahami faktor-faktor astrofizik yang diperlukan pada planet yang boleh didiami.[22] Menurut hasil kajian terbitan Ogos 2015, pembentukan dan perkembangan planet boleh didiami menyebelahi galaksi yang besar-besar berbanding yang kecil-kecil seperti Bima Sakti.[23]

Akan tetapi, persoalan tentang apa yang membuat planet boleh didiami adalah jauh lebih rumit daripada sekadar terletaknya planet di jarak yang betul dari bintangnya supaya air dapat mencair di permukaannya: pelbagai aspek geofizik dan geodinamik, sinaran dan persekitaran plasma bintang perumah boleh mempengaruhi perkembangan planet dan hidupan.[21] Air cecair itu perlu tetapi tidak memadai untuk menampung kehidupan yang kita kenali, kerana kebolehdiaman ialah hasil daripada pelbagai faktor persekitaran.[2]

Kelas spektrum

Kelas spektrum sesebuah bintang menandakan suhu fotosferanya yang (bagi bintang jujukan utama) berkorelasi dengan jisim keseluruhan. Julat spektrum yang bersesuaian dengan bintang boleh didiami dianggap dari "akhir F" atau "G" hingga "pertengahan K". Ini bersamaan dengan suhu sedikit lebih 7,000 K hingga sedikit kurang 4,000 K (6,700 °C hingga 3,700 °C); Matahari sebagai bintang G2 pada 5,777 K nyata tergolong dalam lingkungan ini. Julat spektrum ini barangkali mencakupi 5% hingga 10% bintang-bintang dalam galaksi Bima Sakti setempat. Bintang-bintang "kelas menengah" seperti ini mempunyai beberapa ciri-ciri yang dianggap penting untuk kebolehdiaman planet:

  • Ia sudah hidup sekurang-kurangnya beberapa ratus juta tahun, memberikan peluang kepada hidupan untuk berkembang. Bintang jujukan utama yang lebih berkilau dalam kelas "O" dan juga banyak ahli kelas "B" lazimnya hidup kurang dari 500 juta tahun, malah ada juga yang kurang dari 10 juta.[24][lower-alpha 1]
  • Ia memancarkan sinaran ultraungu berfrekuensi tinggi yang cukup untuk mencetuskan dinamik atmosfera yang mustahak seperti pembentukan ozon, tetapi tidaklah begitu banyak sehingga hidupan yang baru hendak muncul dimusnahkan oleh proses pengionan.[25]
  • Ia memancarkan sinaran yang memadai pada jarak gelombang yang sesuai untuk fotosintesis.[26]
  • Ia dikitari planet-planet yang wujud air cecair di permukaan pada jarak yang tidak mencetuskan penguncian pasang surut.

Bintang jenis "K" mungkin dapat menampung hidupan lebih lama daripada Matahari.[27]

Boleh dikatakan bahawa persoalan terbuka yang paling penting di seluruh bidang kebolehdiaman planet adalah mengenai kesesuaian bintang kerdil merah kelas K dan M yang lebih malap sebagai perumah bagi planet yang boleh didiami kerana banyak terdapatnya bintang-bintang seumpamanya. Sebuah "Super-Bumi" bergelar Gliese 581 c ditemui mengorbit dalam "zon boleh didiami" pada kerdil merah dan mungkin memiliki air cecair, tetapi ada juga kemungkinan bahawa ia mungkin terlalu panas untuk menampung kehidupan disebabkan kesan rumah kaca, sedangkan jirannya Gliese 581 d lebih berkemungkinan boleh didiami.[28]

Pada September 2012, diumumkan pula penemuan dua planet yang mengitari Gliese 163[29][30][31] Salah satu planetnya, Gliese 163 c yang agak panas dan kira-kira 6.9 kali jisimnya berbanding Bumi, dikira terletak dalam zon boleh didiami.[30][31]

Kajian tahun 2013 membayangkan bahawa bintang sejuk yang memancarkan lebih banyak cahaya dalam inframerah mungkin merumahkan planet yang lebih hangat dengan kurangnya bentukan ais dan bebola. Keadaan planetnya lebih panas kerana jarak gelombang sinaran bintangnya diserap oleh ais dan gas rumah hijau di planet berkenaan.[32][33]

Kajian tahun 2020 mendapati bahawa separuh daripada bintang seakan Matahari yang ada mungkin dapat menempatkan planet-planet berbatu yang berkemungkinan boleh didiami, malah dianggarkan bahawa secara purata, planet dalam zon boleh didiami terdekat di sekitar bintang jenis "G" dan "K" terletak 6 parsek jauhnya, dan terdapat kira-kira empat planet berbatu di sekitar bintang jenis "G" dan "K" dalam lingkungan 10 parsek (32.6 tahun cahaya) dari Matahari.[34]

Zon boleh didiami yang stabil

Rencana utama: Zon boleh didiami

Zon boleh didiami (ZBD) merupakan kawasan angkasa berbentuk "sfera lindungan" di keliling sesebuah bintang di mana planet boleh menampung air cecair di permukaannya.[21] Konsep ini mula diusulkan oleh ahli astrofizik Su-Shu Huang pada tahun 1959 berdasarkan kekangan iklim daripada bintang perumah.[21] Selain daripada sumber tenaga, air cecair diterima umum sebagai faktor paling penting untuk kehidupan memandangkan betapa integralnya air cecair kepada segala sistem hidupan di Bumi. Akan tetapi, jika ditemuinya hidupan di mana tiadanya air, maka skop definisi ZBD akan perlu diperluas seluas-luasnya.

Batasan dalam ZBD ialah jarak dari bintang di mana "kesan rumah hijau luar kawalan(Inggeris:-{runaway greenhouse effect}-)" mengewapkan seluruh takungan air, dan sebagai kesan sampingan, mencetuskan penguraian wap air oleh tindakan cahaya dan pelesapan hidrogen ke dalam angkasa; sementara batasan luar ZBD ialah jarak di mana kesan rumah hijau yang maksimum pun tidak dapat mengekalkan suhu permukaan planet di atas takat beku, dan daripada sejatan CO2.[21][3]

ZBD yang "stabil" melibatkan dua faktor:

  1. Julat ZBD tidak patut berubah-ubah secara mendadak sepanjang masa. Setiap bintang makin lanjut usia makin berkilau, maka ZBD-nya pun bergerak jauh dari bintang, tetapi jika pergerakan ini terlalu cepat (misalnya, dengan bintang supermasif), maka planetnya akan diberi tempoh kesempatan yang terlalu singkat di dalam ZBD untuk mengembangkan hidupan. Pengiraan julat ZBD dan pergerakan jangka lamanya tidaklah semudah mana kerana adanya gelung suap balik negatif seperti kitaran CNO yang cenderung mengimbangi pertambahan kekilauan. Oleh itu, anggapan-anggapan yang dibuat tentang keadaan atmosfera dan geologi sama besar impaknya dengan perkembangan bintang terhadap anggaran julat ZBD; misalnya, cadangan parameter ZBD Matahari pun telah banyak berubah-ubah.[35]
  2. Tidak patut hadirnya jasad berjisim besar seperti gergasi gas dalam atau dekat lingkungan ZBD kerana ini akan mengganggu pembentukan jasad-jasad sebesar Bumi. Misalnya, jirim dalam jaluran asteroid nampaknya tidak dapat berpadu menjadi planet disebabkan resonans (gemaan) orbitnya dengan gergasi gas berdekatan iaitu Musytari; andaikan gergasi gas itu terbentuk di kawasan antara orbit Zuhrah dan Marikh, Bumi pasti tidak akan terbentuk seperti sekarang. Akan tetapi, gergasi gas di dalam ZBD mungkin ada bulan boleh didiami(Inggeris:-{habitable moon}-) asalkan keadaannya cukup baik.[36]

Keberubahan bintang rendah

Rencana utama: Bintang berubah

Semua bintang mengalami perubahan kekilauan, tetapi yang menjadi persoalan ialah sejauh mana kekilauan itu berubah-ubah. Kebanyakan bintang agak stabil, tetapi segelintir bintang berubah sering menjalani pertambahan kekilauan yang mendadak dan oleh itu pancaran tenaga terhadap jasad-jasad yang mengitarinya pun meningkat secara mendadak. Bintang-bintang seumpama ini dianggap kurang sesuai untuk merumahkan planet yang boleh didiami hidupan kerana sifatnya yang tidak dapat diduga serta perubahan keluaran tenaganya akan menjejaskan daya hidup organisma, iaitu benda-benda hidup yang terbiasa dengan julat suhu yang tertentu tidak dapat hidup dalam keadaan suhu yang berubah-ubah terlalu mendadak. Lebih-lebih lagi, pertambahan kekilauan yang ketara sering diiringi oleh ledakan pancaran sinar X dan sinar gamma melampau yang boleh membahayakan nyawa. Atmosfera planet sungguhpun dapat mengurangkan kesan bahaya tersebut, tetapi sukar dimantapkan kerana tenaga berfrekuensi tinggi dari bintang akan menggugat medan perlindungan planet berkenaan secara berterusan.

Dibandingkan dengan kebanyakan bintang lain, Matahari adalah cukup tenang; perbezaan antara keluaran maksimum dan minimum adalah kira-kira 0.1% sepanjang setiap kitaran suria yang selama 11 tahun. Terdapat bukti kukuh (tetapi masih dipertikai) bahawa sedikit mana pun perubahan dalam kekilauan Matahari akan menyebabkan kesan yang ketara terhadap iklim Bumi dalam era bersejarah; misalnya, Zaman Ais Kecil pada pertengahan alaf kedua mungkin disebabkan oleh kemerosotan yang agak berjangka panjang dalam kekilauan Matahari.[37] Oleh itu, perubahan kekilauan bintang tidak semestinya pembolehubah yang sebenar untuk mempengaruhi kebolehdiaman planet. Bintang 18 Scorpii dikatakan antara bintang yang paling mirip dengan keadaan Matahari, tetapi sayangnya, berkenaan prospek wujudnya hidupan dalam lingkungannya, amplitud kitaran suria 18 Scorpii jauh lebih tinggi daripada Matahari.[38]

Kelogaman tinggi

Lihat juga: Kelogaman

Sungguhpun sebahagian besar bintang terdiri daripada hidrogen dan helium, namun terdapat variasi yang ketara dalam jumlah kandungan unsur berat (logam). Kadar logam yang tinggi dalam bintang dihubungkaitkan dengan berapa banyaknya bahan berat yang ada pada mulanya dalam cakera protoplanet(Inggeris:-{protoplanetary disk}-). Mengikut teori pembentukan sistem planet, Jika jumlah logam sedikit maka kemungkinan terbentuknya planet adalah makin tipis. Sebarang planet yang terbentuk di keliling bintang yang kurang logam barangkali rendah jisim dan oleh itu tidak sesuai untuk kehidupan. Kajian-kajian spektroskopi ke atas sistem-sistem yang terdapat eksoplanet setakat ini mengesahkan hubung kait antara kandungan logam yang tinggi dan pembentuk planet, yang mana bintang mana yang mempunyai planet yang setidak-tidaknya serupa dengan planet yang sedia diketahui, ternyata lebih kaya dengan logam jika dibandingkan dengan bintang yang tidak diiringi planet.[39] Hubungan antara kelogaman tinggi dan pembentukan planet ini juga bermaksud kemungkinan besar sistem-sistem yang boleh didiami terdapat pada bintang generasi muda kerana bintang yang terbentuk awal-awal dalam sejarah alam semesta adalah kurang kandungan logam.

Rujukan

WikiPedia: Kebolehdiaman planet http://cds.cern.ch/record/895337 http://blogs.discovermagazine.com/80beats/2011/03/... http://apnews.excite.com/article/20110219/D9LG45NO... http://translate.google.com/translate?u=https://en... http://www.latimes.com/science/la-sci-earth-like-p... http://www.redorbit.com/news/space/1112902301/cool... http://www.solstation.com/stars2/18sco.htm http://www.space.com/17684-alien-planet-gliese-163... http://www.space.com/30335-giant-galaxies-habitabl... http://www.space.com/scienceastronomy/astrobio_cav...